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ABSTRACT

Extended precipitation forecasts, with leads of weeks to seasons, are valuable for planning water use and are

produced by the U.S. National Weather Service. Forecast skill tends to be low and any skill improvement could

be valuable. Here, methods are discussed for improving statistical precipitation forecasting over the contiguous

United States. Monthly precipitation is forecast using predictors from the previous month. Testing shows that

improvements are obtained from both improved statistical methods and from the use of satellite-based ocean-

area precipitation predictors. The statistical superensemble method gives higher skill compared to traditional

statistical forecasting. Ensemble statistical forecasting combines individual forecasts. The proposed super-

ensemble is a weighted mean of many forecasts or of forecasts from different prediction systems and uses the

forecast reliability estimate to define weights. Themethod is tested with different predictors to show its skill and

how skill can be improved using additional predictors. Cross validation is used to evaluate the skill. Although

predictions are strongly influenced by ENSO, in the superensemble other regions contribute more to the

forecast skill. The superensemble optimally combines forecasts based on different predictor regions and pre-

dictor types. The contribution from multiple predictor regions improves skill and reduces the ENSO spring

barrier. Adding satellite-based ocean-area precipitation predictors noticeably increases forecast skill. The

resulting skill is comparable to that from dynamic-model forecasts, but the regions with best forecast skill may

be different. This paper shows that the statistical superensemble forecasts may be complementary to dynamic

forecasts and that combining them may further increase forecast skill.

1. Introduction

Accurate short- to medium-range climate forecasting,

from weeks to seasons, is valuable for planning and

preparing for situations that could have large economic

or health impacts. Precipitation forecasting is particu-

larly important because it is critical to agriculture, mu-

nicipal water supplies and control, and disaster relief

support. However, predicting precipitation tends to be

more difficult than predicting temperature (see, e.g.,

Barnston and Smith 1996), and much effort has been

made to improve those forecasts. One reason for that

difficulty is the smaller spatial and time scales of pre-

cipitation. In the extratropics, precipitation is often

concentrated along moving weather fronts. In the

tropics and the warm-season extratropics, small-scale

convective precipitation is common, which can be even

more difficult to predict (Stensrud et al. 2000; dos Santos

et al. 2013). However, statistics of precipitation such as
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the monthly average anomalies considered here tend to

have larger spatial scales and may be more predictable

(Krishnamurti et al. 2002). Monthly precipitation

anomaly scales still tend to be smaller than monthly

temperature anomaly scales, which are dominated by

airmass movements often persistent for weeks to

months. The difficulties of the short- to medium-range

forecasts are partly due to the nonlinearity and chaotic

limitations of the numerical weather prediction models

whose forecasts can have good skill out to a week but

lose skill at longer leads (e.g., Chen et al. 2013; Vitart

2014). Conventional nonensemble linear statistical pre-

diction also has limited skill at this time scale.

This paper demonstrates how the superensemble

statistical methods can improve the precipitation fore-

cast skill for the contiguous United States (CONUS).

The goal of this study is to demonstrate improvements of

the U.S. monthly precipitation forecasting from two

sources. One is the method of ensemble statistical

forecasts using multiple predictors and multiple statis-

tical models. These improvements occur because each

predictor can best predict different parts of the forecast

region. In addition, different statistical models can re-

solve the forecast relationship in distinct ways. We

demonstrate these method-based improvements using

sea surface temperature (SST) and land precipitation

predictors.

Another improvement is from the use of the satellite-

based oceanic-precipitation predictors. Since large-scale

CONUS precipitation events over the oceans are con-

nected to large-scale episodes spanning land–sea

boundaries, the addition of ocean-area precipitation

predictors should be able to improve forecasts. The

contribution of individual events is smoothed out by

monthly averaging, but monthly forecasts can be helped

by the detection of the oceanic-precipitation tendencies,

as shown by our results. These results show that oceanic

precipitation gives some information for prediction that

is independent of the information from SST.

Compared to nonensemble forecasts, the testing

shows improved skill from the ensemble methods. In

most of our discussion, we use anomaly correlation as a

measure of skill, although in section 4c three-category

forecast skill is also considered. The ensemble methods

include separating predictor data into separate spatial

regions and using multiple statistical models and su-

perensemble weighting to combine individual forecasts.

Superensembles are formed by weighting individual

forecasts or different ensemble prediction systems by

their relative reliability (Krishnamurti et al. 1999;

Palmer et al. 2004). In the statistical ensembles consid-

ered here the superensemble inputs are forecasts from

two statistical models that use a range of predictors.

Overall anomaly correlations for short-term pre-

cipitation forecasts using these methods are comparable

or slightly better than those from a dynamic forecast

model for CONUS. That suggests that these methods

may be used to supplement and improve forecasts for

the United States and to provide more reliable forecasts

for other regions where resources may be limited. The

next section describes the data used to develop and test

the improved forecast methods, followed by a de-

scription of the methods and testing done, and a dis-

cussion of results.

2. Data

Several satellite- and in situ–based datasets are used

for testing and demonstrating improved precipitation

forecasting. The Global Precipitation Climatology

Project One-Degree Daily (GPCP 1DD; Huffman et al.

2001) data are used for precipitation. Over land GPCP

includes both satellite estimates and the available

gauges, while over oceans only satellite estimates are

available.We useGPCP data so that we can evaluate the

impact of oceanic satellite data on predictions. The

monthly GPCP begins in 1979, while the GPCP daily

data begin in 1997. We use the daily data from the

shorter record because its oceanic variations are based

on more and better-quality satellite estimates. The daily

data used for this study cover the years 1997–2014

(Huffman et al. 2001; Adler et al. 2003). For themonthly

forecasts discussed, the daily data are averaged to one-

degree monthly values. Monthly precipitation anoma-

lies are computed by removing the annual cycle for the

18-yr period.

In addition to GPCP, one-degree optimum in-

terpolation (OI) SST (Reynolds et al. 2002) is used to

help predict precipitation. The OI SST is dominated by

satellite inputs, but in situ data are important for cor-

recting large-scale satellite biases and helping to fill

consistently cloudy regions. As with the precipitation,

SST anomalies are computed by removing the 18-yr

annual cycle for the same period.

3. Methods

In this section statistical methods are described, in-

cluding the statistical models for individual ensemble

members, the use of cross validation to tune and eval-

uate models, and the ensemble statistical (ES) method.

a. Testing and tuning methods

All analyses use data from a fixed period to estimate

forecast anomaly correlation skill using cross validation

(e.g., Michaelsen 1987). In our cross validation we
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construct statistical models that exclude data around the

target forecast time. Data excluded extend for at least

3 months before and after the target forecast time to

exclude dependent relationships with some persistence.

The independent models are used to forecast the target

time. This process is repeated for each forecast time.

Using cross validation, we can evaluate the skill of each

model and the ES combinations of individual models.

The forecast skill is evaluated using temporal correla-

tion between the cross-validation forecast anomalies

with the withheld GPCP anomalies. For some compar-

isons, spatial averages of temporal correlation are used.

For averaging correlations, regions with negative cor-

relation have no skill and are assigned values of zero

correlation.

Preliminary investigations were performed to test the

ensemble method and to evaluate the differences be-

tween using one anomaly model for all seasons and

separate anomaly models for different seasons. This

initial testing used linear regression to predict the

CONUS precipitation from individual climate-mode

indices. Six climate-mode indices were obtained from

the National Oceanic and Atmospheric Administration

(NOAA) Climate Prediction Center (CPC), including

the Southern Oscillation index (SOI); Niño-3.4 SST

anomaly; SST anomaly indices for the North Atlantic,

South Atlantic, and tropical Atlantic; and the North

Atlantic Oscillation (NAO). In addition, the Mantua

et al. (1997) Pacific decadal oscillation (PDO) monthly

index was used.

Using these indices as predictors, we considered cross-

validation regression forecasts using anomalies from all

seasons and cross-validation regressions from individual

3-month seasons. Several regressions yielded noticeable

skill, but there was no advantage to using separate re-

gressions for different seasons. The all-month model has

many more months available for model development,

which may offset disadvantages from mixing anomalies

fromdifferent seasons.Based on these initial resultsweuse

anomalies from all months in later model development.

For the rest of this study, we consider forecast models

using both joint empirical orthogonal function (JEOF)

analysis and canonical correlation analysis (CCA), de-

scribed in the following subsections. Both the JEOF and

CCA decompose predictors and predictand into spatial

modes. Most prediction variance is accounted for by the

leading modes, and including higher modes can increase

noise. The number of modes to use is a model selection

problem in statistical theory or communication engi-

neering. Akaike information criterion (AIC) is some-

times used for the model selection (Burnham and

Anderson 2002). Here, cross validation is used to de-

termine the optimal number of modes for each.

b. JEOF analysis

Empirical orthogonal function (EOF) analysis (e.g.,

Davis 1976) is a statisticalmethod for decomposing space–

time data for a climate parameter, such as precipitation,

into a set of spatial EOF modes weighted by associated

time series, called principal components (PCs). Both

EOFs andPCs for differentmodes are orthogonal, so each

mode represents statistically independent variations. The

JEOF analysis decomposes the space–time data for more

than one climate parameter, for example, precipitation

and temperature. Mathematical formality of the JEOF is

the same as the conventional EOF, but a JEOF shows

spatial variations associated with the multiple climate

parameters, and the same can be said for the joint PCs. To

compute a JEOF, the different climate fields are nor-

malized and then stacked together and theEOF analysis is

performed on the combined normalized fields. After the

forecast is made, the normalization can be removed.

An analysis for a global region may require some

statistical compromise to maintain orthogonality.

Analysis using a smaller region can limit the compro-

mise needed and better express relationships with fewer

modes. For the tests described here there are two fields.

One is the predictand Pf (t1 1) which is the space–time

field of precipitation anomalies for the CONUS. The

other is the predictor fields for the previous month,

which can be SST for one of four regions SSTk(t) or

precipitation for the same regions or for the U.S. area

Pk(t). We construct separate JEOF analyses for each

predictor field and Pf (t1 1), for each of the k predictor

regions, giving a number of different forecasts for U.S.

precipitation anomalies. Among the k predictor regions

are the ocean regions of the tropical Pacific, the tropical

Atlantic, the North Pacific, and the North Atlantic

(Fig. 1). Tropical regions extend over 238S–238N
and extratropical regions extend over 208–608N. They

FIG. 1. Predictor areas using different colors for the five areas:

tropical Pacific (A1), tropical Atlantic (A2), North Pacific (A3),

North Atlantic (A4), and CONUS (A5). Gray shading in 208–238N
indicates the regions where tropical and extratropical areas over-

lap. Both SST and precipitation predictors (i.e., P) from time t2 1

are used for oceanic regions. The CONUS predictor region uses

precipitation from time t 2 1 as a predictor.
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overlap in 208–238N, but are otherwise separate. These

regions reflect variations in the climate indices consid-

ered for preliminary testing and are roughly the same

four predictor regions used by Lau et al. (2002), who

showed that the ensemble CCA can improve forecast for

theUnited States andminimize the spring barrier, which

can cause lower skill for U.S. precipitation prediction in

March and April. There are four JEOF forecasts based

on the previous month’s SST, one for each ocean region.

There are five precipitation-predictor areas tested, the

four ocean regions and the U.S. area for the previous

month. Cross-validation testing shows that JEOF cor-

relation is highest for these predictor regions when

about five modes are used.

c. Canonical correlation analysis

Barnett and Preisendorfer (1987) developed the CCA

method in EOF-based spectral space and demonstrated

the predictability of the U.S. area monthly and seasonal

temperature based on the global SST field. The CCA

predictor and predictand fields are both first decom-

posed using EOFs to remove noise that could contami-

nate the forecast and to simplify computation. Since

Barnett and Preisendorfer (1987), the CCA has been

usedmany times for prediction and climate analysis. The

CPC has used CCA as one of its operational long-term

climate prediction methods since 1990s (Barnston and

Ropelewski 1992). The CCA also has potential for im-

proving U.S. dynamic climate forecasts by correcting

systematic model errors (Smith and Livezey1999). Shen

et al. (2001) developed the method of ensemble CCA

(ECCA) to predict the U.S. precipitation. Lau et al.

(2002) divided the global ocean into different basins

based on the climate dynamic analysis, applied the

ECCA method to predict monthly and seasonal U.S.

precipitation, and showed noticeable correlation im-

provement compared to other methods and success in

overcoming the spring barrier.Mo (2003) introduced the

ECCA method to CPC to improve the U.S. tempera-

ture, and CPC later adapted the ECCA method as one

of its six operational seasonal forecast tools.

As with the JEOF, the CCA forecasts are computed

separately for each predictor region and data type, for a

total of nine CCA forecasts of U.S. area precipitation.

Cross-validation tests show that the CCA correlation is

highest when about 20 modes are used for these pre-

dictor regions. We use both JEOF and CCA forecasts

based on the same predictors for two reasons. One is to

test which method yields the best overall skill. The other

is to see if combining the two methods yields a better

forecast. Although we may expect that JEOF and CCA

will give similar results because they are similar linear

models, there are differences. The CCA optimizes

correlation between predictor and predictand fields,

while the JEOF optimizes the explained variance of the

combined predictor–predictand joint field. Because of

those differences, and because the CCA prefilters data

using EOFs, their forecasts will be slightly different and

testing them both is justified.

d. Superensembles

Superensemble forecasts are computed using the indi-

vidual statistical forecasts. As discussed above, there are

four ocean predictor areas (Fig. 1). For each ocean area a

statistical model is developed using both SST and ocean

precipitation to predict the CONUS precipitation for the

next month. For each model, JEOF and CCA, there are

four SST-based models and four ocean-precipitation-

based models. In addition, the U.S. precipitation itself is

used as a predictor for U.S. precipitation the next month.

Thus, there are a total of nine possible JEOF predictions

and nine possible CCA predictions for the next month,

illustrated in Fig. 1. The superensemble finds the optimal

combination of the models at each spatial location for

each calendar month.

Ensemble forecasts are a weighted average of multi-

ple forecasts, which tends to damp inconsistent results

that may be more from chance than from model skill.

The ensemble statistical method was developed by Shen

et al. (2001) and the value of the method was further

demonstrated by Lau et al. (2002) and Mo (2003). The

basic idea behind the ensemblemethod is that combined

results from many statistical models can yield a result

superior to any of the individual forecasts and also better

than may be expected from a nonensemble statistical

model using the same predictor data. A single statistical

model using all predictors together can lead to damping

at some locations where different predictor regions have

inconsistent relationships.

In some ensembles, results from different models are

given equal weight. In a superensemble, individualmodels

or forecast systems areweighted differently, depending on

the reliability of their forecast (Krishnamurti et al. 2000).

Our superensemble assumes that models are not all

equally good for every forecast target region and that

stable statistics can be computed for the unequal weight-

ing of ensemble members.

Here, separate superensemble weights are computed

for each forecast at each location and each calendar

month. The optimal weights are computed assuming

that the individual statistical forecasts are unbiased. An

assumption of little or no systematic error, or bias, is

reasonable for anomaly forecasts. Any systematic errors

in the forecast may be retained in the superensemble.

However, systematic errors are not apparent in the re-

sults and the assumption seems justified. To estimate
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optimum weights, we use a method similar to OI. If we

apply OI to a point, we may assume that spatial corre-

lations between inputs are all 1. Since data are assumed

to be unbiased, all errors are random. In that case the

weights for each of the k estimates are proportional to

1

11h2
k

. (1)

Here, h2
k is the noise/signal variance ratio for estimate k,

defined as the ratio of random-error variance for pre-

dictor k to the variance of the error-free signal.

To further simplify the estimate of the relative

weights, we may express each model estimate as

y
k
5 y1 «

k
, (2)

where y is the error-free variable and «k is the unbiased

random error, which may be different for each predictor

k. Note that the random error is uncorrelated with y. If

we define the error-free signal variance as s2, then the

variance of the estimate can then be expressed as

s2
k 5s2 1 h«2ki. Here h«2ki is the noise variance and the

angle brackets denote averaging. Because the error is

uncorrelated with zero mean, the covariance between yk
and y reduces to simply s2 and the correlation between

the two reduces to s/sk. Squaring the correlation gives

r2k 5
s2

s2 1 h«2ki
. (3)

Multiplying the numerator and denominator of the

right-hand side of (3) by 1/s2 yields

r2k 5
1

11h2
k

. (4)

Thus, the correlation squared is proportional to the

optimal weight for each estimate. To avoid including

forecasts with no skill for a region, values of rk , 0 are

set to 0.

To avoid damping of the weights, we can define

S5�N

k51r
2
k and define the optimal superensemble

weight for each estimate as wk 5 r2k/S.

The monthly cross-validation maps of correlation for

each individual forecast are used to compute the weights

as a function of space and calendar month, with negative

correlation set to zero. Since the cross validation ex-

cludes data from the forecast time, the cross-validation

correlations are independent of the forecasts and rep-

resentative of the correlations that would be used in

actual forecasts. Because the correlations are in-

dependent of the forecast time, they may be used to

optimally combine the forecasts without overfitting. We

demonstrated the stability and independence of the

weights by comparison to double-cross-validation

weights (discussed in the supplemental material).

4. Results

Temporal correlations computed from cross-

validation anomalies are used to evaluate the different

forecast models. Both spatial averages over the U.S.

area and maps of correlations are used for the evalua-

tion. Correlations are computed using the 18-yr record

for each month. Thus, for January correlations the 18

Januaries are used, and for each month a separate cor-

relation is computed to evaluate the seasonal cycle of

anomaly correlation. Additional evaluations are done

using three-category validation and time series of cross-

validation forecasts and validation data for several

regions.

a. Average correlations

First, the value of the ensemblemethod is shown using

spatial-average correlations of different CCA forecasts

of the CONUS precipitation anomalies (Fig. 2). The

nonensemble forecast is computed using SST from all

regions together in one CCA, here called C(T). For

every month of the year C(T) has systematically lower

correlation than the superensemble CCA forecast using

the same SST predictors divided into the four regions

E[C(Ti)]. For the 18-yr record, a 95% significant cor-

relation is 0.4 or higher. Here, the significance is estimated

using a directional Student’s t test with n2 1 degrees

of freedom, computed using online VassarStats tools

(http://vassarstats.net/rsig.html). By that standard, theC(T)

forecast is significant over 7% of CONUS, averaged

over all months of the year. The average correlation

is much lower than the significant correlation be-

cause of the presence of many areas with much lower

FIG. 2. Spatial averages of temporal cross-validation correla-

tion from CCA prediction, using: all SST together C(T), an

ensemble of CCAs using the same SST divided into four regions

E[C(Ti)], and an ensemble that also adds U.S. precipitation

predictors E[C(Ti, PUS)].
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correlation. By contrast, the E[C(Ti)] forecast is signif-

icant over 22% of the region, on average. The C(T)

average U.S. correlation is comparable to the zero-lead

CCA precipitation forecast average North American

correlation from Barnston and Smith (1996). They

used a longer record of global SST to evaluate lag

relationships with precipitation. Although that area-

average correlation is low, it can be useful for fore-

casting some parts of the region. This test shows that

dividing the predictor region and forming a super-

ensemble of multiple forecasts can more than double

the area-average correlation and greatly expand the

area with significant correlations. Next, the super-

ensemble can be expanded using the prediction that

uses the forecast-area precipitation from the prior

monthE[C(Ti, PUS)]. That adds additional correlation

skill in every month and increases the region with sig-

nificant correlations to 31% of the total. These compar-

isons show that the ensemble method is clearly better

than the nonensemblemethod and that adding additional

predictors has the potential for increasing skill.

The annual spatial average of the monthly E[C(Ti)]

correlation is 0.26, while the average C(T) correlation is

0.12 and the CCA for the tropical Pacific SSTs yields an

average of 0.10. That suggests the dominance of

ElNiño–SouthernOscillation (ENSO) variations onC(T).

The monthly correlation for C(T) is highest in February

(Fig. 2), when correlation based on the tropical Pacific and

the North Pacific SST subareas are also strongest. In

March, the correlation based on the tropical Pacific is

much lower, reflecting the spring barrier in ENSO-related

predictions. The ENSO variations are stronger than those

from other regions, leading to its dominance of the C(T)

correlation. The E[C(Ti)] correlation is highest in March,

when correlations based on the tropical and North At-

lantic subregions are highest. In the superensemble, the

March predictions from the tropical Pacific are given lower

weight because of their lower skill in that month, and

predictions from other regions are allowed to contribute

more. It may be argued that, given enough modes, the C

(T) correlation could approach theE[C(Ti)] correlation. In

practice that does not occur, perhaps because the record

length for computing relationships is limited and the data

that the relationships are based on may contain errors.

Cross-validation testing showed that including more

modes does not increase CCA skill. The superensemble

method overcomes these practical limitations on the

C(T) model.

Ensemble forecasts using SST from four regions and

PUS are used to compare correlation skill from ensem-

bles using both CCA and JEOF forecasts. Again, spatial

averages are used tomake comparisons (Fig. 3). Formost

months the ensemble of JEOF forecastsE[J(Ti,PUS)] has

slightly higher average correlation than the ensemble of

CCA forecasts. However, the ensemble that combines

both CCA and JEOF forecasts using the same predictors

E[B(Ti, PUS)] has systematically higher correlation than

the ensembles using only one type of model. This shows

that CCA and JEOF models do not resolve identical

variations. Examination of individual correlation maps

shows that the regions of highest correlation are not the

same for both CCA and JEOF. Since the superensemble

weights are a function of both month and spatial region,

the ensemble allows the best forecast for each region to

dominate.

Another potentially valuable predictor is ocean-area

precipitation. Using both CCA and JEOF, forecasts are

produced using ocean-area precipitation for the same

four SST ocean regions, and those forecasts are added to

the ensemble. With both CCA and JEOF models, the

ensemble E[B(Ti, Pi, PUS)] has eighteen members.

Comparisons show that adding oceanic-predictor

members systematically increases the average correla-

tions (Fig. 4). The annual average correlation without

oceanic precipitation is 0.42, while with it the average is

0.50. TheE[B(Ti,PUS)] forecast correlation is significant

over 55% of the forecast region, on average, while the

E[B(Ti, Pi, PUS)] forecast correlation is significant over

74% of the region, a valuable improvement in the

significant area.

An average correlation of 0.50 for precipitation pre-

diction is good, even for the short lead discussed here.

However, the cross-validation correlations are com-

puted over a relatively brief period. For each month

there are only 18 years of cross-validation estimates.

Although cross validation removes dependent in-

formation from the analysis statistics, it is possible that

the number of important climate episodes in the period

could bias the correlation estimate. For example, if there

is good predictability associated with ENSO and the

FIG. 3. Spatial averages of temporal cross-validation correla-

tion from ensemble prediction SST divided into four regions and

U.S. precipitation predictors, using: CCA E[C(Ti, PUS)], JEOF

E[J(Ti, PUS)], and the ensemble of both CCA and JEOF models

E[B(Ti, PUS)].
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number of those episodes in the validation period is

unusual, then the cross-validation correlation may not

be representative of other periods. To test that sampling

representativeness, for each month we apply bootstrap

sampling to the 18 years of cross-validation estimates to

evaluate how sampling of climate episodes may influ-

ence the correlation [see, e.g., Efron and Gong (1983)

for a description of the bootstrap method].

For the bootstrap sampling, for each month, we ran-

domly select 18 cross-validation forecasts and validation

pairs from the full set of estimates. A random number

generator is used to select years, with duplicates as

needed to get a sample of 18 pairs. The randomly se-

lected pairs are used to compute correlation, and the

process is repeated 1000 times. Using those 1000 corre-

lation samples, the 5th and 95th percentiles are used to

define confidence intervals. For the U.S. average cor-

relation of the best model E[B(Ti, Pi, PUS)], in each

month the cross-validation average correlation varies by

less than 60.10 for nearly all samples (Fig. 5). The

spread is slightly smaller in the warm season, and the

average confidence interval is about 60.07. For the an-

nual average of the monthly correlations, the 5th and

95th percentiles are 0.42 and 0.56, respectively. A longer

record with more sampling of climate episodes could

yield more reliable correlations, but this test suggests

that the main conclusions are unlikely to change. Using

that confidence interval to compare area-average cor-

relations fromE[B(Ti,PUS)] to those fromE[B(Ti,Pi,PUS)]

suggests that in almost every month the increase in average

correlation for E[B(Ti, Pi, PUS)] is significant, and the in-

crease is more significant in the warm season.

b. Monthly correlation maps

Correlation maps show where the forecast tends to be

reliable for each month and where and when it may not

be useful. In considering anomaly correlation maps it is

useful to compare them with anomaly standard de-

viation maps (Fig. 6) of four months: January, April,

July, and October. Since regions with low standard de-

viation are typically close to climatology, the forecast

correlation skill of those regions is less important.

Anomaly correlation skill is more important in regions

with high standard deviation. In much of the west,

standard deviation is low, except on the West Coast in

the cool season. High values also occur along the Gulf of

Mexico coast and parts of the Northeast, especially in

the cool season.

The correlation skill maps (Fig. 7) show that in

January correlation is good on most of the West Coast,

greater than 0.5, indicating that the improved forecast

could help forecasting for the wet season in that region

where standard deviation is high. But the high correla-

tion in January does not extend to Southern California,

where there is also high standard deviation. January

correlation is also high on the southern part of the Gulf

Coast, although it is lower just north of the coast.

Standard deviation is high in both regions. There are

large regions of low correlation, less than 0.2, including

the Northeast. Useful correlation in April is in many

places an extension of the January skill. In April corre-

lation in the Gulf region is improved and expanded

northward into areas with high standard deviation. Such

skill could be useful for agriculture because it is in an

important farming region and is early in the warm

growing season. Improved estimates of rainfall for the

month could improve planning for the growing season,

including issues such as the timing of planting and how

much water will be needed for irrigation. However, the

Northeast, where standard deviation is also relatively

high, has almost no skill in April.

For July correlation is weaker in the much of the Gulf

of Mexico region but is still good along the Texas coast

where standard deviation is high. Correlation is also

relatively high southwest of the Great Lakes, an im-

portant region for agriculture with high standard

FIG. 4. Spatial averages of temporal cross-validation correlation

from ensemble prediction using both CCA and JEOFmodels. One

uses SST divided into four regions andU.S. precipitation predictors

E[B(Ti, PUS)], and the other also includes oceanic-precipitation

predictors E[B(Ti, Pi, PUS)].

FIG. 5. Spatial averages of temporal cross-validation correla-

tion from ensemble prediction using both models for all pre-

dictors E[B(Ti, Pi, PUS)]. The solid line is the cross-validation

estimate using all data and the dashed lines show the bootstrap

confidence interval.
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deviation. In October correlation skill is high in the Gulf

and extending north, where standard deviation is high.

However, skill for the Northeast is low, in a region that

also has high standard deviation.

The superensemble method allows any number of

models to be included in the ensemble, as long as their

relative skill can be estimated. For example, the

National Multi-Model Ensemble (NMME) of dynamic

models (Mo and Lettenmaier 2014) yields average cor-

relation skill similar to that from the statistical super-

ensemble. In the NMME, skill is about as good as the

skill from the best model in that ensemble, but better

FIG. 6. Anomaly standard deviation for the indicated month from GPCP data.

2706 JOURNAL OF HYDROMETEOROLOGY VOLUME 17

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 04/04/22 05:32 PM UTC



than the skill from the worst model. No single model in

NMME is consistently best, so the ensemble helps to

find the highest skill. Compared to the statistical su-

perensemble, the NMME highest correlation skill is

often in different regions, such as Southern California in

January and the Northeast in April. Thus, including

those NMME predictions in an expanded super-

ensemble with statistical models could further improve

results. There is no guarantee that including more

models will increase forecast skill (Kumar et al. 2001;

FIG. 7. Anomaly forecast correlation for the indicated month for the E[B(Ti, Pi, PUS)] model.

Correlations above 0.4 are statistically significant at the 95% level.
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Weigel et al. 2008). If the additional models only have

high skill in the same place as existing models then they

may not add useful information. But when an additional

forecast has skill in regions where the existing forecast

has low skill, the superensemble method described here

will recognize and use the complementary skill.

c. Three-category validation

Short-range climate forecasts are often presented as the

chance that conditions will fall into one of three cate-

gories: above normal, normal, or below normal (e.g., see

forecast produced by CPC at http://www.cpcpara.ncep.

noaa.gov/). Here we use the 18-yr record for each month

to define the lower, middle, and upper third of pre-

cipitation anomalies and to evaluate howwell the forecast

predicts the correct category. For comparison, ensemble

forecasts without and with oceanic-precipitation pre-

dictors are compared to show how the oceanic pre-

cipitation impacts the superensemble forecasting of the

correct category.

Several comparisons are used to broadly evaluate the

impact of oceanic predictors on hits and bad misses us-

ing three categories. The percent of hits is one com-

parison, defined as the forecast area where forecasts fall

within the correct category. With random guessing,

about 33% of the area would fall in the correct category.

Another measure of interest is the percent of forecast

bad misses, defined as the percent of the area where the

forecast misses the correct category by two categories. A

bad miss is counted if above average is forecast and

below average occurs, or if below average is forecast and

above average occurs. With random guessing bad misses

would occur about 22% of the time. For each compari-

son the combined CCA and JEOF forecasts are used to

form the superensemble, without and with oceanic-

precipitation predictors. The percent of forecast area

with the correct tercile (Fig. 8) is always above 33%. The

percentage of hits is also higher in the warm season

when it is near 38%. Including oceanic-precipitation

predictors does not help forecast the correct category in

the first half of the year. This shows that for forecasting

the correct tercile, adding more predictors is not always

useful. The value of the oceanic-precipitation predictors

is clearer in the second half of the year when excluding it

causes the correct category skill to drop. The relatively

low hit scores in Fig. 8 shows the inability of forecasting

extremes using either CCA or JEOF, a common prob-

lem of statistical forecasting methods.

The advantage of including oceanic-precipitation pre-

dictors is clearer in the percent of area that misses the

correct tercile by two categories (Fig. 9). The percent of

area with bad misses is always low, roughly 8%–15%, and

including oceanic precipitation always reduces the percent

of badmisses. Examination of area-average correlation for

individual forecasts indicates that the oceanic-precipitation

forecasts typically have higher correlations than SST

forecasts when the JEOF prediction model is used with

tropical Pacific and Atlantic predictors. For extratropical

predictors using the JEOF model and for all regions using

the CCA model, the average correlations from oceanic-

precipitation predictors is about the same or less than from

SST predictors. These comparisons suggest that the JEOF

model makes better use of tropical oceanic-precipitation

information that is partly independent of the SST pre-

diction information. The lower CCA skill from those re-

gions may be due to its smoothing of predictors and

predictands using EOFs. In any case, it appears that the

JEOFmodel is responsible formuch of the decrease in bad

misseswhen oceanic precipitation is added.Badmisses can

have a large impact on forecast confidence. For example, if

above average is predicted and normal occurs, it may not

be a disaster for agriculture, but if below average occurs it

could be a much larger problem. Therefore, including

oceanic-precipitation predictor forecasts is justified.

d. Spatial averages of forecasts and validation

Averages of cross-validation forecast and the valida-

tion data are compared for several regions. For simplicity

FIG. 8. The percent area where the forecast falls into the correct

third for the indicated forecasts.

FIG. 9. The percent area where the forecast misses the correct third

by two categories for the indicated forecasts.
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we use area averages of the best monthly forecasts, the

superensemble using all predictor inputs for both CCA

and JEOF models. The monthly spatial averages are

smoothed with a 3-month running mean to damp sub-

seasonal variations and make comparisons easier.

Averages over the entire forecast area (Fig. 10) show

that the forecasts tend to predict large ENSO variations,

as in early 1998, and it also tends to capture much of the

lower-frequency variations in the period. However,

there are times when the forecast fails, such as in 2004

and 2012. When the forecast fails it usually damps the

anomaly toward zero, although there are times when it is

stronger, such as in 2002 and 2010. The southern U.S.

precipitation is more strongly impacted by ENSO and

the forecast has higher skill in that region. Over the

southern United States, anomaly variations are larger

and the forecast clearly resolves much of the interannual

and lower-frequency variation, although there are still

times when the forecast fails (Fig. 11). Forecast failures

tend to occur when there is no dominant climate process

occurring, such as when there is no ENSO episode.

When a strong ENSO occurs, it strongly influences cli-

mate anomalies over the forecast region, making fore-

casting more reliable. In the absence of a dominant

process, a combination of weaker processes contribute

to climate anomalies. The statistical models are less

skillful at forecasting weaker processes and how they

may interact to cause climate anomalies, accounting for

forecast failures. In 2004/05 there was amodest-intensity

central-Pacific warm ENSO episode, but the forecast

failed to predict heavier-than-normal precipitation in

the southern United States associated with the episode.

Using a dynamic model, Garfinkel et al. (2013) showed

that central- and eastern-Pacific warm ENSO episodes

can have similar teleconnections in the cool season, but

there is some variation in the responses, making the

sample size important. The index of Kao and Yu (2009)

indicates some extended periods of central-Pacific

warmth in our base period, but they may not be suffi-

cient for fully resolving the relationships statistically

and a longer base period may be needed.

There are many more regional comparisons that could

be useful for different applications, but the results of

these examples are typical of what we found in evaluating

other regional averages. Although these forecasts have

good skill for precipitation, there aremany variations that

they do not resolve and there is room for improving the

ensemble. In particular, the addition of models that re-

solve variations unrelated to dominant processes like

ENSO could improve the superensemble forecast. For

statistical models it may be possible to find smaller pre-

dictor subareas that better resolve weaker relationships,

and it may be possible to improve forecasting of weaker

relationships using additional predictors, such as total

precipitable water. However, a longer base training pe-

riod may also be needed to resolve the weaker climate

relationships using statistical models. Another way to

better resolve weaker relationships may come from dy-

namic models or ensembles of dynamic models. Such

forecasts could be incorporated in a superensemble along

with statistical model forecasts. Since dynamic forecasts

are fundamentally different from statistical forecasts, it is

possible that they may contain significant independent

information.

5. Summary and discussion

We show that a superensemble of statistical models

can improve the correlation skill of short-period pre-

cipitation forecasts over CONUS. We do this using

cross-validation testing of precipitation for each month

using predictors from the previous month. Including

models that use oceanic-precipitation predictors further

improves the skill, raising the average correlation to 0.5.

This shows the value of the satellite-based oceanic pre-

cipitation for short-term precipitation forecasts.

FIG. 10. Monthly forecast and GPCP validation anomalies

averaged over the CONUS.

FIG. 11. Monthly forecast and GPCP validation anomalies

averaged over the CONUS south of 358S.
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The individual statistical models used in the ensem-

ble are inexpensive, which makes it possible to develop

and test models for many more regions using an ex-

panded set of predictors. There is no limit on the

number of models that may be included in the super-

ensemble forecast, which weights individual model

forecasts by their relative skill. In addition, both sta-

tistical and numerical model results can be included

in a superensemble forecast in cases when both are

available.

As Kumar et al. (2001) discuss, adding an unlimited

number of models to an ensemble does not guarantee

continued improvement of skill. If a superensemble is

augmented with another run of the same type of model

using the same kind of predictors, then it may not re-

solve anything new about the prediction relationship.

However, if an additional model resolves a relationship

that is not resolved in the existing set of models in a

superensemble, then adding it should improve pre-

diction. The difficulty is in identifying unique predictor–

predictand relationships. In addition, including dynamic

forecast in a superensemble could enhance skill if the

dynamic models resolve relationships that are poorly

resolved by the statistical models in the superensemble.

Here, monthly forecasts were discussed for one lead

over one region for precipitation.

Much of the predictability from the superensemble is

from variations associated with ENSO, but the results

show clearly that including models with predictors from

outside the tropical Pacific greatly improves the average

correlation skill of the prediction. In addition, including

additional predictors reduces the spring barrier associ-

ated with ENSO-based prediction. Examination of av-

erage correlations for predictions from individual

models and subregions shows that all models and sub-

regions yield similar average correlations. For example,

the North Pacific predictors yield about as much skill as

the tropical Pacific predictor. Some of the relationship

from the North Pacific is likely to be associated with

ENSO because of teleconnections with the tropical Pa-

cific, but other variations not directly associated with

ENSO also influence its variations. Therefore, including

models that use North Pacific predictors gives some in-

dependent information and improves the skill of the

superensemble. The North Atlantic is influenced by

other climate modes such as the North Atlantic Oscil-

lation, and including that region yields additional in-

dependent information. Since the different regions are

separated, information from the North Atlantic that

maymore strongly influence one region does not need to

be balanced by information from the tropical Pacific,

which may most strongly influence a different region.

The superensemble weights, which are a function of

calendar month and location, are used to form an opti-

mal combination of the various forecasts.
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